
J. Fluid Me&. (1975), uol. 72, part 4, p p  661-671 

Printed in Great Britain 
661 

Cntical-level behaviour and wave amplification 
of a gravity wave incident upon a shear layer 

By I. A. ELTAYEB AND J. F. McKENZIE 
Department of Mathematics, University of Khartoum, Sudan 

(Received 29 November 1974 and in revised form 11 July 1976) 

The properties of reflexion, refraction and absorption of a gravity wave incident 
upon a shear layer are investigated. It is shown that one must expect these 
properties to be very different depending upon the parameters (such as the 
Richardson number Ri, the wavelength normalized by the length scale of the 
shear and the ratio of the flow speed to the phase speed of the wave) character- 
izing the interaction of a gravity wave with a shear layer. In  particular, it  is shown 
that for all Richardson numbers there is a discontinuity in the net wave-action 
flux across the critical level, i.e. at  a height where the flow speed matches the 
horizontal phase speed of the wave. When Ri > 2, this is accompanied by absorp- 
tion of part of the energy of the incident wave into the mean flow. In addition 
it is shown that the phenomenon of wave amplification (over-reflexion) can 
arise provided that the ultimate shear flow speed exceeds the horizontal phase 
speed of the wave and Ri is less than a certain critical value Ri, 21 0.1129, in 
which case the reflected wave extracts energy from the streaming motion. 
It is also pointed out that wave amplification can lead to instability if the 
boundary conditions are altered in such a way that the system can behave like 
an ‘amplifier ’. 

1. Introduction 
In  this paper we investigate the reflexion and refraction of gravity waves by 

a shear layer. It is well known (see, for example, Booker & Bretherton 1967) that, 
if the component in the direction of the streaming of the phase speed of a gravity 
wave matches the flow speed at some point, a critical layer develops and most of 
the energy of the wave is absorbed into the mean flow for Richardson numbers of 
order one or more. On the other hand, an analysis of the reflexion and stability 
of gravity waves in the presence of a shear layer by Jones (1968) has revealed that 
wave amplification (or over-reflexion) may occur. Following this, McKenzie 
(1972) showed that gravity waves reflected from a vortex sheet are amplified 
if the shear flow speed exceeds the horizontal phase speed of the incident gravity 
wave, i.e. if a critical level exists. The implication of these results is that under 
certain conditions gravity waves, rather than being absorbed, can extract energy 
from the mean flow. It is the purpose of the present work to indicate the different 
conditions that give rise to either critical-level behaviour (i.e. absorption), wave 
amplification or both. 

As a model, we have chosen our basic flow to be a finite uniform shear layer. 
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This model has the advantage that some analytical results can be obtained. Con- 
cerning its stability properties, the following remarks may be in order. If the shear 
layer extends over a semi-infinite region, the flow is stable for all positive Richard- 
son numbers (Chandrasekhar 1961). The stability of the finite shear layer con- 
sidered here is not investigated, but we suspect that it may be unstable for 
sufficiently small Richardson numbers (see the review by Drazin & Howard 
1966 for the stability of similar, but in important respects different, shear 
layers). Wave amplification also occurs for sufficiently small Richardson num- 
bers but it is important to realize that, although wave amplification and in- 
stability are both related to the presence of streaming, they are in general quite 
distinct because they involve the excitation of different hydrodynamic modes. 
Hence the criteria for their occurrence are different (see, for example, Miles 1957; 
Fejer & Miles 1963; Fejer 1964; McKenzie 1970 for a discussion of the criteria for 
stability and wave amplification for vortex and current sheets). 

In  the next section we calculate the reflexion and transmission coefficients 
for a gravity wave incident upon a shear layer. In the last section we use the 
invariance of the wave-action flux to establish some general results. In  the 
interesting situation in which the ultimate mean flow speed U, (on the far side 
of the shear layer) exceeds the phase speed c of the incident wave relative to the 
near side of the shear layer, so that a critical level exists, we find the following. 

(i) There is a discontinuity in the net flux of wave action across the critical 
level for all positive Richardson numbers. Por Ri > &, this discontinuity repre- 
sents absorption of wave energy into the shear layer, whereas for Ri < t it  may 
be thought of as representing an energy flux ‘defect ’ associated with the layer. 

(ii) Wave amplification (or over-reflexion) occurs if the Richardson number is 
less than a certain critical value Ri,, which for the case in hand turns out to be 
approximately 0.1129. 

Thus if Ri < R, and U, > c, part of the incident wave’s total energy flux is 
‘locked’ inside the layer as an energy flux ‘defect’ and at  the same time the re- 
flected wave is amplified, thereby extracting energy from the streaming motion. 

In  the limiting case when the vertical wavelength (normalized by the thickness 
of the shear layer) is large and the associated Richardson number is small, we 
find that the reflexion coefficient for the total energy flux (or wave-action flux) is 
approximated by the remarkably simple expression 

This formula reveals not only the strong asymmetry of the properties of reflexion 
due to streaming but also the wave amplification that arises when U, > c and the 
resonance that occurs at  U, = 2c because for this flow speed the incident wave 
stimulates a natural mode of the shear layer. It has been shown (McKenzie 1972) 
that wave amplification is due to the coupling of positive- and negative-energy 
waves on either side of the shear layer. A negative-energy wave is one that 
appears to carry a deficiency of energy in the laboratory frame of reference 
(Sturrock 1962), and this occurs for the transmitted wave if U, > c. It is pointed 
out that wave amplification could give rise to instability if the boundary con- 
ditions were altered in such a way that the system behaves like an ‘amplifier’. 
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2. Reflexion and transmission of gravity waves by a uniform wind 
shear 

For wave perturbations varying as exp i(ot - kxx)  in an incompressible strati- 
fied fluid where the density varies as exp ( - /?z)  and which moves with mean 
velocity U = (U(z ) ,  0, 0) ,  the linearized equations of motion and continuity, 
under the Boussinesq approximation, can be combined to yield (Jones 1968) 

Here 4 is related to the vertical component of the perturbation velocity w 
through w = q5 exp (*/3z), N is the Brunt-Vaisalil frequency, given by N 2  = pg, 
and g the downward gravitational acceleration. 

We consider the problem of a gravity wave incident upon a shear layer. The 
basic flow is specified by 

0, z < 0 (regionI), 

U = U'z, U' = Uo/L, 0 < z < L (regionII), ] (2) Lo, x 2 L (regionI11). 

A gravity wave from region I incident upon the wind shear layer (region 11) 
gives rise to a reflected wave in region I, a transmitted wave in region I11 and 
two waves, one upgoing and the other downgoing, in region 11. In region I the 
solution takes the form 

$ = I exp ( ikzl z)  + R exp ( - ikzl z), (3) 

where I is the amplitude of the incident wave and R that of the reflected wave. 
The vertical wavenumber Ic,, is given by 

(4) 

If we take 7c,, as the positive root of this equation, the choice of the signs in (3) 
ensures that the incident wave transports wave energy upwards (towards the 
shear layer) and the reflected wave carries wave energy downwards (away from 
the shear layer) since downward (upward) phase propagation of a gravity wave 
corresponds to upward (downward) wave energy propagation (see 3 3). In  region 
I1 equation (1) takes the form of Whittaker's equation, so that the solution may 
be written as 

where A, and A ,  are amplitude constants and W, and W, are Whittaker functions 
(Jones 1968): 

kt1 = k;(N2/o2 - 1) - &p2. 

4 = A l W )  +A,%@), (5) 

w,(4 = J&IL(Y(zc-a W,w = %,-m(Y(zC--zh (6) I (7) 
in which y = 2kx( 1 +B"4k34, j = p/y, 2, = C/U', 

c = w/?cz, V P  = 4 - Ri, Bi = N=/U'2. 

Here Ri is the Richardson number characterizing the layer, and the height z,, 
usually called the critical level, where the horizontal phase speed c matches 
the flow speed U ,  corresponds to a regular singular point of (1). 
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In  region I11 the solution takes the form 

g5 = Texp ( i l C , 3 ~ ) ,  ( 8 )  

(9) 

where T is the amplitude of the transmitted wave and kz3 is given by 

k t  = k:{Na/(w - IC, u g ) 2  - 1) - ip .  
Again the choice of sign of kz3 ensures that the transmitted wave transports wave 
energy upwards (i.e. kz3 ( c -  U,) > 0). 

To simplify the algebra in the discussion given in the next section, we shall 
make use of the 'low frequency' approximation, i.e. w < N ,  so that the dispersion 
equations appropriate to regions I and I11 may be approximated by 

The amplitudes of the reflected and transmitted waves are determined by 
applying the boundary conditions at z = 0 and z = L. The boundary conditions, 
namely the continuity of the vertical component of velocity and continuity of 
pressure, are equivalent to  

[9] = [3!-LE] = 0 at 2 = 0, L, 
dz U - c d z  

where square brackets indicate the jump in the quantity within. 

transmission coefficients : 
Some straightforward algebra then yields the following for the reflexion and 

for U, < cand 

Here we have used the notation 

W,,AL) = -%,*rn(~(zc-L)) ,  K,2(0)  = J(j,&m(Yzc), %,A -L )  = Jf j , * rn(~(L-zc ) )*  
(17) 

In  matching the solutions across the critical level, we have used the results of 
Baldwin & Roberts (1970), which apply for all values of the Richardson number 
(see also Miles 1961; Booker & Bretherton 1967). 
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The dispersion equation for the system as a whole may be obtained by putting 
I = 0 in the boundary conditions and equating to zero the determinant of the 
coefficients of the amplitude factors. This leads to 

and 

&dr1+dP, = 0 for V, < c 

tS2drl+dr2 = 0 for U, 2 c. 

Thus the zeros of the denominators in (12) or (14) correspond to the normal modes 
(stable or unstable) of the system. Therefore it may be expected that, if the 
horizontal phase velocity of an incident wave matches the corresponding phase 
speed of the system, we shall have resonance (i.e. I R/I I --f a). More generally, it 
will be shown, in the next section, that incident waves whose vertical wavelengths 
are in some sense large compared with the thickness of the shear layer can be 
amplified (IR/Il > 1) on reflexion from the layer provided that the Richardson 
number is sufficiently small and U, > c. 

3. Discussion of wave amplification and critical-level behaviour 
We now discuss how a gravity wave incident upon a shear layer exhibits 

different reflectivity and transmissivity properties depending on the Richardson 
number, the wavelength, and the length scale of the wind shear. Booker & 
Bretherton (1967) have shown that, if the Richardson number is of order unity 
or larger, a critical layer forms around the level where the horizontal phase speed 
of the wave matches the flow speed. Since the reflexion coefficient is very small 
and the wave is heavily attenuated in passing through the critical layer, the 
implication is that the shear layer absorbs the energy of the incident wave. 
However, if U, < c, no critical level exists and the wave is transmitted with 
constant total energy flux (or, equivalently, constant wave-action flux, defined 
in (20) below). 

On the other hand an analysis (McKenzie 1972) of gravity waves incident 
upon a vortex sheet (i.e. a discontinuous change in wind speed) exhibited wave 
amplification provided that the jump in the flow speed exceeded the horizontal 
phase speed of the incident gravity wave. In  this case the wave extracts energy 
from the wind shear. As we shall see, that analysis provides the asymptotic form 
for the reflexion coefficient for a finite shear when the wavelength is very much 
greater than the length scale L of the shear. 

We shall establish some general results by using the invaxiant 

A = Re (( - i$dq5/&)/2k3, (20) 

where Re denotes the real part and the bar the complex conjugate. The fact that 
A is independent of x ,  except at the critical level (where it is discontinuous), 
follows from the differential equation (1) and the boundary conditions (11). 
A is called the flux of wave action (Bretherton & Garrett 1968; Hayes 1970) and 
its invariance is closely linked to the invariance both of the vertical component 
of the total energy flux and of the vertical flux of the horizontal component of 
momentum, or Reynolds stress (Eliassen & Palm 1960). 
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To clarify the discussion in the next section on the results obtained below using 
the wave-action flux, we mention here the relationships between wave-action 
flux, wave energy flux and total energy flux. If p is the perturbation pressure, w 
is the vertical component of the perturbation velocity and angular brackets 
denote a time average, the wave-action flux is (pwllc(c - U ) )  and the total energy 
flux is (cpw/(c  - U ) )  while the wave energy flux is merely (pw). For the purpose 
of defining the concept of positive- and negative-energy waves (see below) we 
find it convenient to thinkin terms of the wave energy density and wave momen- 
tum density. To find the wave energy density E and the wave momentum density 
M, in a reference frame relative to which the fluid moves uniformly along the 
x axis with speed U, we can use the rules for the Galilean transformation of the 
wave energy-momentum tensor (Sturrock 1962). These yield H, = Nh and 
E = E' + UM;, where E' and Mk are respectively the wave energy density and the 
x Component of the wave momentum density in the rest frame of the fluid. From 
the relations M, = dkL/w' and w' = w - k, U we obtain, after using ka = k;, 
E = e'w/w' = sc/(c- U ) .  Since E', w > 0, we see that the wave energy density E 

in the laboratory frame is negative if w' < 0. Thus E 0 according as U 2 c. On 
the other hand the x component e'k,/w' of the wave momentum density (or 
wave pseudo-momentum; see McIntyre 1975) is invariant. The wave action is 
given by E'Io' and the vertical component of the total energy flux is 

sawlalc, = ( E i W / w i )  aw'lalcs. 
Now if U, < c there is no critical level in the shear layer, and the invariance of 

A over the whole domain gives 

which may also be interpreted as expressing equality of total energy flux into 
and out of the layer. In  accordance with the rules for the choice of sign both ks, and 
kB3 are positive, thus lR12 < and wave amplification is impossible for all 
Richardson numbers when U, < c. 

If U, > c, there is a critical level within the layer; we make use of the following 
approximate solutions valid near x = 2,: 

(a )  Ri > Q, 
(22) 

(23) 

A l { y ( ~ ,  - z)}*+~/' +A2{y(zC - 2 ) ) t i " ,  z < x,, 
# = { A  { Y(Z - zC))&fiE" + A,*{~(z  - Z~))&"P, z > z,, 

where A: = -iAlerP, A,* = -ie--TP, p = (Ri - $)*; 
( b )  Ri < $, 

(25) where AT = - i A l e i m f l ,  A,* = -iA 2 eim". 

The matching of the solutions across the critical layer (Baldwin & Roberts 
1970) is essentially the same (since m = ip) in both caaes but is written in this 
form to illustrate the different natures of the solutions in the shear layer for 
values of the Richardson number below and above ;3. 
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Evaluating A below the critical level gives 

where 

Here Im denotes the imaginary part. Similarly we evaluate A above the critical 
level : 

Combining (26) and (28 )  gives the following form for the energy equation when 
there is a critical level in the shear layer: 

k i  111 = kzi (R I + &3 I T I + Qi - Q2. (30) 

The term on the left-hand side of (30) represents the total energy flux into the 
shear layer whereas the first two terms on the right-hand side represent the total 
energy flux out of the layer. (Note that ks3 < 0 here.) In  view of the different 
natures of the solutions in the layer for Ri 2 [see (22) to (25)] it would perhaps 
be misleading to interpret Q1-Q2, when Ri < t, as representing the flux of 
energy absorbed into the layer. In  this case Q1 - Q2 may be thought of as repre- 
senting an energy flux ‘defect’ associated with the layer. 

When U, > c, kzl > 0 and kz3 < 0. It follows immediately from (27), (29) 
and (30) that there can be no wave amplification if Ra > a. On the other hand, 
when Ri < B, wave amplification requires Q1 c 0. This result also follows directly 
from the reflexion coefficient (14). 

If we note that 

Im(A2&) = = lA,l2(8,-S2)/2i, 

and use expression (16) for S2, we lind that 

Q1 = 2ymlA212(a2, + b?)-l{- 2yk2,m cos 2nm+ (a1a2 +bib,) sin 2nm}, (31) 

(32) 
al, 2 = y{Ni, - N j ,  ‘1.2 = 23 

x = y(L-x,) = ? /L( l - c /U) .  M j s h ( x ) 9 1  

where 

By noting that i& can be written as 

k& = ( f -m”)”/L(- l+c/U,) ,  
we see that kB3/2kn = (& - ” 2 ) & / ~  = N/2@’, 

where o’ is the Doppler-shifted frequency. Since w‘ 4 N ,  then x < 1. Thus in 
(32) it is legitimate to use the following asymptotic forms of the Whittaker 
functions valid for small argument: 

Hj,*JX) N Xffnz, x < I. 
It follows that 

(33) 
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Since kz3 < 0, the condition for wave amplification (Q1 < 0) is fulfilled if 

-cot 27rm > ( - 1 + 1/4m2)*, (35) 

which yields Ri < Ri, (= 0.1129). (36) 

Thus wave amplification occurs if the ultimate shear flow speed is greater than 
the phase speed of the incident wave provided that the Richardson number of 
the shear layer is less than Ri, = 0.1129. 

On the other hand we note that critical-level behaviour occurs not only for 
Ri > 2 but also for Ri < i. In  the latter case the amount of wave energy absorbed 
or locked into the layer [see remarks below (30)] is proportional to Q1-Q2, 
which is given by 

Q1-Q2 2: IA212(2y)2m( -kz3)  (a?+bf)-l{m(l +cos2nm)+(&-m2)8sin27rm} (37) 

when use is made of (33) for the Whittaker functions. Thus we see that Q1 - Q2 
is positive and tends to zero only when R, --f 0 (i.e. m --f 4). 

We shall now obtain the asymptotic forms of the reflexion coefficient in the 
limits (i) yL  < 1 or Ri < 1 and (ii) Ri 9 1. 

Case (i). yL < 1 

When the normalized wavelength is large (i.e. y L  -g l), the Whittaker functions 
are approximated by (33) and (12)-( 17) yield to first order 

R 
'5= 

and 

These agree with the reflexion and transmission coefficients for acoustic-gravity 
waves incident upon a sharp discontinuity in velocity (McKenzie 1972) when 
we use the approximation w -=g N .  In accordance with the rules for the choice of 
sign of kz, and ka we obtain the following expressions for the reflexion and trans- 
mission coefficients for the total energy flux expressed as a function of 27, and c: 

]R/I12 = U;/(~C- Uo)2, (42) 

(43) 7 2  = 4(c - Uo)3/c(2c - Uo)2. 
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Here 7 2  is the ratio of the transmitted energy flux to the incident flux and care 
has been taken to define the energy density of the transmitted wave in a moving 
medium [McKenzie 1972; see remarks above (21)] with the result that 

These equations display the features of wave amplification, resonance and 
the strong asymmetry of the reflexion coefficient about U, = 0. We see that the 
wave amplification occurs when the fluid in region 111 moves faster than the 
horizontal phase speed of the incident wave. This phenomenon is due to the inter- 
action between positive- and negative-energy waves (McKenzie 1972), in the 
sense explained above (21), in the presence of streaming. Here the incident wave 
carries positive energy towards the shear layer while the transmitted wave 
carries away negative energy, that is to say, the transmitted wave appears to 
carry a deficiency of energy in the laboratory frame as a result of the ‘super- 
sonic’ motion. The resonance (IB/1l2 -+ 00) at U, = 2c arises because the phase 
speed of the incident wave matches the phase speed of a natural mode of the 
shear layer. This can be seen by considering the dispersion equations (18) and 
(19) in the limit yL 4 1. This gives 

in both cases, which, on using the expressions for and kc3) shows that the phase 
velocity of a ‘ripple’ on a velocity ‘discontinuity’ is one half the jump in the 
fluid speed across the discontinuity, i.e. o$cz = @,. We also note that the re- 
flexion coefficient tends to unity for flow speeds well in excess of the horizontal 
phase speed. In  fact, however, total reflexion takes place at flow speeds above 
that required to  Doppler shift the frequency up to the Brunt-VSslilsi frequency. 
That this feature does not emerge from (42) is a result of our ‘low frequency’ 
approximation. 

Although wave amplification is not a result of instability, it  is intuitively 
clear that it could be a source of instability. For example, consider altering the 
boundary conditions in region I by introducing a solid boundary at some depth 
z = -d .  From the analysis above, a wave reflected from the shear layer can be 
amplified if U, > c. This reflected wave will be perfectly reflected from the solid 
boundary and on a further reflexion from the shear layer will again be amplified 
and so on. Thus the wave picks up more and more energy and momentum from 
the shear layer as it bounces between it and the solid boundary. In  this way the 
system behaves like an amplifier with positive feedback. Therefore it seems 
clear that wave amplification can lead to instability since such an alteration in the 
boundary conditions has provided a mechanism for transferring the available 
energy in the streaming motion into hydrodynamic modes: in this case gravity 
waves. 

kSI+k#S = 0 (45) 

Case (ii). Ri @ 1 

Let us now consider reflexion from and transmission through a shear layer 
characterized by a large Richardson number and hence associated with a small 
normalized wavelength (i.e. kg,L @ 1). In  this case we expect the reflexion 
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coefficient to be small since the 'geometric optics' (or WKBJ) approximation 
should be valid, and at  the same time the transmission of the wave will be strongly 
affected by whether or not a critical level is present within the layer. 

The approximate solutions ( 2 2 )  are appropriate for this case of large Richard- 
son number and by writing these functions in the form 

(2, - z)ghaRi' = (2, - x)* exp { f. iRi8log (zc - z ) ]  (46) 

we see that the wave perturbations behave as exp i{wt - k,x k Rit log (zc - z)) ,  
which shows that the local vertical wavenumber kz2, say, is given by 

kB2 = T Ri4/(zc - 2) .  (47) 

In  interpreting ( 2 2 )  as representing the sum of upgoing and downgoing waves, 
we see that the wave amplitudes are altered by the factors -iexp & Rit. Thus 
for Ri $ 1, IS2\ (= lA1/A2[) is either very small or very large, in which case the 
reflexion coefficient (14) can be approximated by 

where n = 1 or 2 and we must choose the Whittaker function W, that represents 
a wave carrying (wave) energy upwards, towards the critical level. From (47) 
above and (22), we see that A2W2 is the upward-propagating wave which is 
absorbed in the critical layer. Therefore, from (22), we have 

~W;(O)/W,(O) = - (8 - iRi*)/xC. (49) 

RII = i/Mi&. (50) 

Substituting (49) along with kzlzc = Ri8 into (48), we obtain 

Thus, in accordance with our expectations, (50) shows that the reflected energy 
flux is small, being of order 1/16Ri. It is worth noting that this reflected energy 
flux arises from partial reflexions of the upgoing wave before it reaches the 
critical level. These are dominated by the reflexion from the shear discontinuity 
at x = 0. 

In  a similar way we find that the transmission coefficient given by (13) and (15) 
approximates to 

It is instructive to use (51) to write down the ratio of the transmitted and inci- 
dent energy fluxes. The vertical component of the total energy flux of an acoustic- 
gravity wave in a medium moving along the x axis with speed U is given by 
(McKenzie 1972) 

pw2wk,(w'2 - N2) 
(kZ + p-1) w'2 

J , =  -- 
2: pw2N2w/( - ks) d2, d < N ,  
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where w’ - w - k, U and w is the vertical component of the perturbation velocity. 
Substituting (51) into (62),  we find that the ratio of the transmitted and incident 
total energy fluxes (or equivalently, wave-action fluxes) is given by 

When U, < c, there is no critical level and we have complete transmission of the 
energy, although the amplitude of the transmitted wave is not equal to that of 
the incident wave. It is interesting to note that the reason for this lies in the fact 
that the energy density of a wave is not invariant under Galilian transforma- 
tions of the reference frame whereas the momentum flux density is invariant 
under such transformations (Sturrock 1962). On these grounds it can be deduced 
that, for gravity waves in a shear flow, the upward flux of horizontal momen- 
tum is conserved except at  a critical level, where there is a discontinuous 
jump (Eliassen & Palm 1960; Booker & Bretherton 1967), whereas the energy 
density is not. 

When U, > c, equation (53) serves to show that the transmission of total 
energy flux is practically zero, because of strong absorption into the shear layer. 

We wish to thank the referees for some constructive suggestions as a result of 
which the paper has been improved. 
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